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Abstract 

It is shown that a pyrolytic graphite monochromator 
crystal scatters X-rays as a mosaic crystal in accord- 
ance with the Darwin formulism, both for reflecting 
power and integrated intensity, over a range in 
wavelength from 0.5 to 1.54 A. The scattering cannot 
be considered kinematic and, from estimates of the 
reflectivities parallel and perpendicular to the diffrac- 
tion plane, polarization ratios are calculated which are 
in accord with published values. A simple description of 
the scattering process is given. The variation of 
polarization ratio with mosaic spread is discussed. 

Introduction 

Crystals of pyrolytic graphite are now used extensively 
as monochromators since, being composed of layers of 
parallel atoms, X-rays are efficiently diffracted by these 
layers and, being made of carbon, there is relatively 
small absorption. 

Any effective monochromator must be able to 
diffract a fairly high percentage of the beam incident 
upon it and a physical description of the scattering 
process in such a monochromator is unlikely to be 
given by the kinematic theory which assumes that there 
will be no significant reduction in the intensity of the 
main beam as it passes through the crystal. Thus the 
behaviour of a graphite monochromator can be 
considered a problem in extinction and Jennings (1981) 
has examined the applicability of a number of theories 
of extinction to monochromators, particularly as 
applied to polarization ratios. 

The polarization ratio of a monochromator is the 
ratio of the intensity diffracted parallel to the diffraction 
plane to that diffracted perpendicular to the diffraction 
plane. The appropriate intensity will be either the 
integrated intensity if the divergence of the incident 
beam is greater than the rocking curve of the 
monochromator, the reflected intensity if vice versa. 
Most practical situations will correspond to an inter- 
mediate case. 

When the beam from a monochromator is itself 
scattered by a second crystal, it is necessary to know 
the state of polarization of the beam from the 
monochromator if the intensity of the beams from the 
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second crysfal are to be correctly related to structure 
factors. If the scattering in the monochromator obeys 
the kinematic theory, the polarization ratio will simply 
be cos220a, where 0 a is the Bragg angle; if the 
monochromator is perfect, the polarization ratio will be 
cos 20 a. However, as has been pointed out by Jennings 
(1968, 1981), when severe extinction occurs in a 
mosaic crystal, much of the incident energy of each 
polarization will be diffracted and the polarization ratio 
could approach unity. 

Le Page, Gabe & Calvert (1979) have described a 
method of experimentally determining polarization 
ratios and obtained values greater than cos 20 a for 
Cu Ka and Mo Ka radiations. Using two crystals of 
differing mosaic spreads, they obtained polarization 
ratios which were not significantly different. Vincent & 
Flaek (1980), using a method which involved a 
comparison of data collected with filtered and mono- 
chromatized radiation, obtained a value of the 
polarization ratio between cos 2 20 a and cos 20 a for 
Cu Ka radiation, but outside that range for Mo Ka and 
Ag Ka radiations. The present study describes the 
measurement of the reflecting powers and integrated 
intensities from a graphite monochromator over a 
range of wavelengths, the comparison of the results 
with the theory of X-ray diffraction in mosaic crystals 
of Zachariasen (1945), and the deduction of the 
corresponding polarization ratios. 

Experimental 

A graphite monochromating crystal, of thickness 
0.922 (3) mm and cross section 20 x 10 mm was 
mounted on a Siemens four-circle diffractometer, the 
X-ray tube housing of which had been adapted so that 
it could rotate about a vertical axis. A second 
monochromator, a perfect silicon crystal reflecting in 
the 111 position, was placed over the main-beam outlet 
port so that a monochromatic beam could be directed 
onto the graphite. The divergence of the beam from the 
silicon was 35" for a characteristic beam and 5' for 
white radiation. The beam from the silicon was passed 
through a collimator of width 0.6 mm. 

The wavelengths used were the K lines from silver, 
molybdenum and copper X-ray tubes and samples of 
the white radiation and some L lines from a tungsten 
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X-ray tube. Because the beam incident on the graphite 
was parallel, it was expected that the polarization ratio 
from the graphite crystal would correspond to the 
reflectivity polarization. 

For each wavelength, the graphite crystal was set so 
that the maximum reflected intensity for the 002 
reflection was recorded and a measurement of the 
incident beam intensity enabled the maximum reflecting 
power, Ro, the ratio of the reflected to the incident 
intensity, to be obtained. The absolute integrated 
intensity, Po, was also measured, along with the full 
width at half maximum (FWHM) of the diffraction 
profile which was found to have a constant value over 
the wavelength range of 0.26 (1) °. A 0 scan of 1 o was 
used which must include a proportion of thermal 
diffuse scattering which would tend to overestimate Po. 
The values of R o and Po are given in Tables 1 and 2 
respectively. Sufficient counts were taken to achieve a 
statistical accuracy of at least 1% in R o and Po. The 
reproducibility was better than 2%. 

Discussion 

Using the Darwin formulism, Zachariasen (1945) 
determined the scattering from a plane parallel plate 
diffracting in the symmetrical Bragg position, that is, 
the situation under which a monochromator operates. 
The theory is based on the solution of differential 
equations which represent the variation in the power of 
both the incident and the diffracted beams as they pass 
through the crystal and takes into account the energy 
lost from and gained by the beams due to diffraction. 
The differential equations can be solved for the 
symmetrical Bragg case and give a reflecting power, R, 
by the equation 

tr + l a / y -  u u[cr + l U / y -  u] exp(--ut) 
R =  

tr o[(o  + /u / y )  sinh ut + u cosh ut] ' 

(1) 
where u = [(tr + l t / y )  2 - a2] 1/2, tr is the reflectivity per 
unit length measured along the surface normal of the 
crystal and is obviously a function of the scattering 
angle and the diffractiort profile, y is the direction cosine 
of the incident and diffracted beams relative to the 
crystal surface, gt is the linear absorption coefficient and 
t is the crystal thickness. The second term in the 
equation for R represents that part of the beam which is 
transmitted through the crystal and, although it was 
negligible for most wavelengths, was included in the 
calculations. 

If we assume a Gaussian profile, the reflectivity, o, at 
a small angle AO from the centre of the Bragg peak is 
given by (Weiss, 1966) 

Q v / 2 g  
a(AO) - - -  exp[-Zzr(A0) 2 g2l, (2) 

Y 

where 

and 

g = 0.664/FWHM 

r21FIZ 23 K2 
Q= 

V 2 sin 20~ 

K 2 is the polarization and all other symbols have their 
usual meaning. 

The two states of polarization can be considered 
separately and it will be assumed that the beam from 
the silicon monochromator has been partially 
polarized, with the intensities of the parallel and the 
perpendicular components being in the ratio of cos 20 M 
to 1, where 0 u is the Bragg angle of the mono- 
chromator. This assumes that the silicon crystal is 
indeed perfect and the presence in the beam of the 
essentially kinematic thermal diffuse scattering and 
contributions from the partially polarized continuum 
will introduce uncertainties in this ratio. However, it 
must be emphasized that the results are not sensitive to 
the polarization of the beam from the silicon 
monochromator. 

Thus, for the parallel component reflected from 
graphite, the reflectivity at peak centre, R,j, can be 
obtained by substituting in (1) 

where 

a,, = Q, ,v /2g/y ,  

all 
r21F1223 cos 2 20~ 

V 2 sin 20~ 

The equivalent perpendicular component, R t, is ob- 
tained by substituting 

where 

a± = Q±v/2g /y ,  

r21FI223 
Q l -  

v 2 sin 20 a" 

The resultant reflectivity is, therefore, 

R± R, cos 20 M 
R =  + 

1 +cos20M 1 + c o s 2 0  M" 

These values were calculated at each wavelength, the 
value of the structure factor F being taken to be 16-6 
(Kestenbaum, 1973). The absorption coefficients, inter- 
polated where necessary, were those of Berry & 
Lawrence (1979). 

Table 1 shows the R~,, R± and the resulting R values 
along with the measured Ro values at the wavelengths 
chosen. Owing to the similarity in the variation with 
wavelength of both the scattering and the absorption, 
the R values do not vary much over the wavelength 
range, rising to a peak value of 0.546 at a wavelength 
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of about 0 . 7 A .  The observed Ro values follow 
approximately the same pattern, having a maximum 
value at the same wavelength but are on average 4% 
greater than the corresponding R values. Systematic 
errors arising from an incorrect assumption regarding 
the state of polarization of the beam from the silicon 
crystal and from errors in the structure factor would be 
insufficient to account totally for this difference. While 
the theory has limitations, (e.g. no account is taken of 
coherent scattering effects or of diffraction broaden- 
ing), it was felt that the agreement was sufficiently close 
to allow meaningful deductions as to the scattering 
mechanism to be made. 

The reflectivity polarization ratio for the beam 
scattered by the graphite, P, will be given by the ratio of 
R,, to R±. The ratios are listed in Table 1 and in all 
cases are greater than the corresponding values of 
cos 20~ and tend towards unity at lower wavelengths. 

The extent to which multiple scattering takes place 
within the crystal can be envisaged by expanding the 
equation for R, assuming no transmitted beam, as an 
infinite series. 

R : x  + x 5 + 2x 5 + 5x 7 + . . . ,  

where 

t7 
x =  

2(~u/~ + a) 

The magnitudes of  the terms in x, x 3, x 5, x 7, etc. 
represent the contribution to R from one, three, five, 
seven, etc. times scattered radiation. The proportions 
vary very little over the wavelength range, about 80% 
of the diffracted beam is once scattered, 13% has been 
scattered three times and even the nine-times-scattered 
beam contributes about 1% of the total. 

A knowledge of the structure factor and the 
absorption factor enables the calculation of the 
kinematic integrated intensity, p~, to be made from 

r21FI2 k3 K2 [1- -  exp(--21at cosec O~)_] 

Pr = V2 sin 20~ 2p - ' 

where 

K 2 =  
1 + cos 20 u cos 2 20o 

1 + cos 20o 

Table 2 shows the values of PK with the observed values 
of Po and it can be seen that the observed values are, on 
average, less than 40% of the kinematic values, 
demonstrating that the scattering process cannot be 
assumed to be kinematic. Kestenbaum (1973) measured 
integrated intensities at wavelengths above 1.66 A and 
obtained integrated intensities approximately two-thirds 
of their kinematic values with a crystal of F W H M  of 
0.8 ° . 

Zachariasen's equation for the reflecting power 
(equation 1) can be integrated numerically over the 
complete Bragg angle using a(AO) given by (2). This 
was done considering the two polarization states 
separately giving the integrated intensities pj. and p, 
and the resultant integrated intensity p. These are also 
listed in Table 2. The Po values exceed the p values by 
10% on average. Also listed in Table 2 are the ratios of 
the integrated intensities for each polarization. 

Table 1. A t wavelength 2, R,~ and R l are the reflecting 
powers for the parallel and perpendicular components 
of  polarization from Zachariasen's equation, R is the 
resultant reflecting power, R o is the measured reflecting 

power and P is the polarization ratio 

k (A) R Rl R Ro P 
0.497 0.528 0.532 0.530 0.528 0.992 
0.561 0.534 0.539 0.537 0.541 0.991 
0.594 0-539 0-545 0.542 0.550 0.989 
0.632 0.540 0.547 0.544 0.565 0.989 
0.671 0-541 0.549 0.545 0.572 0.987 
0.710 0.542 0.550 0.546 0.584 0.985 
0.780 0.540 0-549 0.545 0-573 0.984 
0.853 0.527 0.538 0-533 0.545 0.980 
0.902 0.523 0.535 0.529 0.527 0.978 
0.968 0.516 0.530 0.523 0.520 0.974 
1.030 0.507 0.523 0.515 0.516 0.969 
1.096 0.498 0-518 0.508 0.509 0.961 
1.162 0.485 0.506 0.496 0.506 0.958 
1.213 0.481 0.504 0.493 0.510 0.954 
1.290 0-465 0.491 0.479 0.506 0.947 
1.394 0.450 0.481 0.471 0.500 0-936 
1-481 0.440 0.475 0.459 0.474 0-926 
1.542 0-426 0.465 0.447 0.460 0.916 

Table 2. At wavelength 2, PK is the kinematic inte- 
grated intensity, p± and p,, are the integrated intensities 
for the perpendicular and parallel components of 
polarization from Zachariasen's equation, p is the 
resultant integrating intensity and Po is the measured 

integrating intensity 

All values ofp × 104. P is the polarization ratio. 

k (A) Px Pl P P Po P 

0.497 92.7 35.7 35.4 35.6 37.2 0.992 
0.561 99.3 36.3 35.9 36.1 39.5 0.989 
0.594 103.7 36.9 36.4 36.7 40. I 0.986 
0.632 107.7 37.4 36.6 36.9 40.8 0.979 
0.671 108.3 37.3 36.6 37.0 40.9 0.981 
0.710 111.3 37.2 36.5 36.9 41.4 0-981 
0.780 113.7 37.1 36.3 36-7 39.6 0.978 
0.853 109.1 36.0 35. I 35-6 39.0 0.975 
0.902 108.9 35-9 34.8 35.4 37.7 0-969 
0.968 106.4 35.4 34-1 34.8 36.5 0.963 
1-030 102.8 34.7 33-3 34.0 36.2 0.960 
1.096 100.2 34.3 32.7 33.5 36.1 0.953 
1.162 93.4 33.2 31.4 32.3 35.0 0.946 
1.213 91.9 33.0 31.0 32.0 34.7 0-939 
1-290 84.9 31.9 29.6 30.8 34-6 0.928 
1.394 79-4 31.0 28.4 29.8 32.4 0.916 
1.481 76.0 30.5 27.6 29.2 32.0 0.905 
1.542 71.3 29-7 26.5 28.2 31.0 0.892 
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There have been few direct experimental measure- 
ments of the polarization ratio and comparison of 
results with theory require a knowledge of the mosaic 
spread of the crystal. Le Page, Gabe & Calvert (1979) 
have measured the polarization ratios of two graphite 
crystals, of FWHM 0.42 and 0.60 °. A comparison of 
these experimental results and those obtained using 
Zachariasen's equations for both the reflectivity 
polarization ratio and the integrated polarization ratio 
is shown in Table 3. For Mo Ktt radiation, there is no 
significant difference between the experimental results 
and the calculated ratios while for Cu Ks  radiation, the 
measured values agree very well with the reflectivity 
polarizations for both crystals. 

Direct comparison with other measured values of 
polarization ratio was not possible since in other cases 
no mosaic spread was quoted. While the value of 
0-916 (9) obtained by Vincent & Flack (1980) is 
consistent with a crystal of mosaic spread 0.3 °, 
assuming the reflectivity polarization ratio is appro- 
priate, the values they obtained for Mo Ks  and Ag Ks  
radiations cannot be accounted for by any realistic 
assumption as to the mosaic spread of their crystal. 

Conclusions 

It has been shown that a pyrolytic graphite crystal 
conforms closely to the mosaic crystal model and that 
X-ray scattering in graphite can be described by the 
Zachariasen solution to the Darwin formulism. This is 
essentially a theory of extinction since it takes into 
account the variation in the intensity of the main beam 
as it passes through the crystal and, unlike theories of 
extinction based on Zachariasen (1967), it deals 
adequately with the absorption effects which are 
significant in large crystals. 

The scattering can be simply described. The per- 
pendicularly polarized component undergoes multiple 
scattering within the crystal and the magnitude of the 
emergent radiation depends on the efficiency of the 
scattering and on the absorption. The efficiency of 
scattering of the parallel components of polarization is 
less than that of the perpendicular components (by a 
factor of cos 2 20~) and thus relatively more absorption 

Table 3. Comparison of the reflectivity polarization 
ratio P(z), and the integrated polarization ratio P'(z) 
with the experimental values of Le Page, Gabe & 
Calvert (1979), P(LGC), for Mo Ks  and Cu Ks  

radiations 

Table 4. Variation of FWHM of the diffraction 
profile with refleetivity R, the integrated intensity p, the 
reflectivity polarization P and the integrated polariza- 

tion P' for Cu Ks radiation 

FWHM (0) R p(xl04) P P' 

0.1 0.601 15.8 0.946 0.927 
0.2 0.490 24.3 0.927 0.902 
0.3 0.422 30.2 0-912 0.888 
0.4 0.372 34.5 0-903 0.880 
0.5 0.335 38.0 0.895 0.872 
0.6 0.305 40.7 0.888 0.867 
0.7 0.280 43.0 0.882 0.861 
0.8 0.259 44.9 0.877 0.857 
0-9 0.242 46.5 0-872 0.854 
1.0 0.226 47.6 0-868 0.852 

takes place. In the limit of an infinitely thick crystal of 
zero absorption, both polarizations would be com- 
pletely reflected, giving a polarization ratio of unity. 

The reflecting powers quoted here give a measure of 
the efficiency of graphite as a monochromating crystal 
and show that, for a FWHM of 0.26 °, 58 and 46% of 
beams Mo Ks  and Cu Ks are reflected. The theory 
predicts that the reflection coefficient and, thus, the 
integrated intensity, will be dependent on the mosaic 
spread of the graphite and in Table 4 are listed the 
reflection coefficients and the integrated intensities for 
FWHM values of 0.1 to 1.0 °, assuming an un- 
polarized incident beam of Cu Ks radiation. The 
reflected and integrated polarization ratios are also 
listed. The decrease in the reflection coefficient with 
increasing mosaic spread demonstrates the fall in the 
efficiency of the scattering (the number of blocks) at the 
centre of the rocking curve - the increase in the 
integrated intensity demonstrates the more kinematic 
nature of the scattering for the wider distribution of 
blocks. Both polarization ratios decrease with increas- 
ing mosaic spreads because of the fall in the efficiency 
of the scattering, the integrated polarization ratio being 
the smaller since the scattering away from peak centre 
is more kinematic than at peak centre. Both ratios are 
tending towards cos 2 20~. 

While it may be tempting to calculate a polarization 
ratio of a graphite crystal using this theory it must be 
remembered that, although the polarization ratios seem 
to be in agreement with experimental values, dis- 
crepancies do exist between the theory and the 
measured intensity values presented here. The advice of 
Jennings (1968, 1981) to measure the polarization ratio 
should be considered. 

Mo Kct radiation Cu Ka radiation 

FWHM 0.42 ° 0.60 ° 0.42 ° 0.60 ° 

P(Z) 0.983 0.980 0.901 0.888 
P'(Z) 0.980 0.976 0.880 0.867 
P(LGC) 0.973 (5) 0.970 (3) 0.908 (6) 0.897 (6) 
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Abstract 

The sampling-line method is a convenient procedure for 
evaluating the line profile of a polycrystalline sample. 
To deal with size-broadening effects only, thc method is 
applied to Bernoullian and Gaussian samples; the line 
profile is given by a Lorentzian function in the first case 
and by a similar function in the second case. For any 
real polycrystalline sample the intensity decreases as 
S - 2  for large I sl = IS -- S h k l  I . For a given average 
thickness the apparent crystallite size is up to 2 times 
larger than for samples consisting of crystals with the 
same size and shape. 

Introduction 

The influence of crystal size distributions on dif- 
fraction profiles is an important subject at present, in 
that an accurate knowledge of the line shape is required 
for the structural refinement via powder analysis, such 
as the Rietveld method (e.g. Albinati & Willis, 1982). 

Following previous studies on the subject (Allegra, 
Bassi & Meille, 1978; Allegra & Ronca, 197b, 1979), 
in the present paper we will propose a general 
mathematical treatment for simple statistical distri- 
butions. A few examples of line profiles thus obtained 
will be compared with well-known results from single 
crystals (see, in particular, Wilson, 1949), with the 
purpose of providing simple guidelines for the charac- 
terization of the sample statistics. 

We shall confine our attention to those crystal size 
distributions that may be factorized into terms each 
depending on a single crystallite thickness. In other 
words, if the crystals are bound by n sets of planes and 
d~(i = 1 , . . . ,  n) is the distance between two consecutive 
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parallel planes of the ith set for the general crystal, we 

have 

p(d, d2. . .d , , )=p(d,)p(dz) . . .p(d , , ) ,  (1) 

where the p's are normalized probability density 
functions. The theory will be applied to the Bernoullian 
and Gaussian distributions, already considered in 
previous papers. For the former case (Allegra, Bassi & 
Meille, 1978), the present treatment may be viewed as 
an extension of the results to the general model with 
any number of boundary planes. For the Gaussian 
distribution, an error contained in the former approach 
(Allegra & Ronca, 1978) was pointed out later (Allegra 
& Ronca, 1979), but its consequences on the results 
were not amended, so that they are only correct for 
particular classes of reflections; the procedure given in 
this paper leads to the general result. 

The method of the sampling line 

Stokes & Wilson (1944) showed that the size-depen- 
dent line profile is uniquely related with the probability 
distribution of the lengths of the intra-crystalline chords 
parallel to S o = S(hkI) (S = I SI = 2 sin 0/2; a chord is 
defined as any segment having both ends on the crystal 
surface). Indicating by T the general chord length and 
by p(T) its area probability density, we derive the 
general expression of the line profile for any 
polycrystalline specimen from that proposed for iden- 
tical crystals (cf. Wilson, 1949, ch.IV, equation 5) as 

oo sin2(ztTs) 
. f  (s) = ~ / / V  f p(T) dT / (T ) ,  (2) 

o (~s )  2 

where s is the difference S - S o between the general 
value of S and that corresponding to the hkl point in 
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